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Dynamics in the Sherrington-Kirkpatrick Model. 
I. The First Step 

A. E. P a t r i c k  I" 2 

Received July 26. 1995; final November 28, 1995 

We study properties of the random configuration {sj(1)}jY=l produced by the 
first step of the parallel dynamics in the Sherrington-Kirkpatrick model. We 
show that the law of large numbers holds for the sequence of overlaps between 
the initial (nonrandom)configuration {sj(0)}~=, and {s/1)}~=~, and obtain 
the distribution of the fluctuations around the limiting value. As a by-product 
we derive the average number of the fixed points {si(1 )}7=, = {sj(0)},.u=, with 
a given value of the magnetization raN= (l/N)577= s s j(0). 

KEY WORDS:  Spin-glass dynamics; fixed points; fluctuations. 

1. I N T R O D U C T I O N  

The zero-temperature parallel dynamics of the Sherrington-Kirkpatrick 
(SK) model t5) is commonly defined by the rule 

s / t + l ) = s g n  - -  ~ Jjksk(t)+-~ ~ sk(t) , j = l  ..... N (1) 

where Jjk = Jkj for j > k; sj ~ { - 1, 1 }, j = 1, 2 ..... N, are the Ising spins, and 
{Jjk}j<k are independent random variables with the standard normal 
distribution. 

Among the extensive literature devoted to the study of the dynamics of the 
SK model the paper by Gardner et al. (4) deserves special mention. In that paper 
the values of'some macroscopic observables were calculated for the first four 
steps of the dynamics (1) in the case Jo--0.  Another series of papers where 
exact results for the SK and related models were obtained (see, e.g., refs. 3 
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and 8) was initiated by the paper of Tanaka and Edwards,~7~ who calculated 
the average number of fixed point of the dynamics ( 1 ) in the case Jo -- 0. 

In the present paper we undertake an investigation of (only) the first 
step of the dynamics (1). That is, we investigate the properties of the 
sequence of random variables (more precisely, of the triangular array) 

s)(1)=sgn ~ J/ksk(O)+~ ~ sk(O) , j =  1 ..... N (2) 
k{ g : j )  = I k ( = ~ j )  = I 

in the limit N--* c~. In particular, in Section 2 we calculate the probability 
Pr[sNIaN] to obtain a configuration SN--{a;,}7=, at t = l  given a con- 
figuration aN----{~;}7=, at t = 0  [see Eq. (10)]. Using these transition 
probabilities, we show in Section 3 that the law of large numbers holds for 
the sequence of arithmetic means 

1 5  
qN=~[j~_.~=| a)(1) sj(O) (3) 

and find the distribution of the fluctuations around the limiting value [see 
Eqs. (18) and (19)]. In the particular case aN=So the transition probabil- 
ity Pr[SNIaN] is the probability that the configuration aN is a fixed point 
of the dynamics (1). Therefore, having found the transition probabilities, 
we calculate in Section 4 the average number of the fixed points as a by- 
product [see Eq. (20)]. 

The method we use in the present paper is somewhat different from 
(but certainly is closely related to) those used in refs. 4, 7, and 8. Our 
method, however, in some cases allows us to avoid many potentially 
dangerous steps (like unjustified inversion of the integration order, intro- 
duction of delta functions of a complex argument, formal application of the 
saddle point method for evaluation of multiple integrals, etc.) frequently 
used by physicists (see, e.g., ref. 8). 

Following the suggestion of a referee, the size of this paper was 
significantly reduced at the expense of details of calculations. The complete 
version of the paper is available from the author by request. 

2. T R A N S I T I O N  PROBABILITIES 

We choose as the initial condition for the dynamics ( 1 ) a configuration 
{ gjj /= ~ about which we assume only that 

lira 1 ^' 
j = l  
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To calculate the transition probabilities Pr[sNIgN] [that is, the probabil- 
ity to have a configuration {sj}U=t at time t =  1 given that {si(O)}U=l = 
{a j} N= 1] we calculate first the joint probability density f ( p ) - . f ( # l  ;...; #u) 
of the "local energies" sjhj(O), where 

l N Jo  N 
hJ (0)=- Z JJk~rk+-~ • Cry., j = l  ..... N 

N N / ~ k t  : ~ j )  = I k ( : , ~ j )  = I 

One has 

N 

.](it) = E [-I 6(sjhj(O)-#j) 
j = l  

where E(-) is the expectation with respect to the distribution o f  {Jjk}jN.<k 
and 6(.) is the Dirac delta function. Using the integral representation for 
the delta function 

_ ~ d r  e irj~ 

and exchanging the order of E(. and integration over r's, we obtain 

" f ( P ) = ( 2 ~  _~, �9 - < d z l ' " d r N  

j=l N k~r 

x E e x p  - - -  }-" rjsj 2 Jjkak (4) 
V / / N  j = 1 k(  ~e j l  = I 

Calculating the expectation in Eq. (4) (the interaction strength symmetry 
Jik = Jkj must be taken into account), we obtain 

- -  . . ~  . f(It)  (2n) N _ ~ -~,_ drl '-drN 

xexp i ~  rj ~ ak 
j = 1 k (  :~ j}  = I 

x exp - ( N -  2) }-" r] + rjajsj (5) 
j = l  1 



976 Patrick 

So far our calculations follow closely the commonly used derivation 
(see, e.g., refs. 8 and 7), the next step of which would be the linearization 
of the quadratic term in 

- -  r jO ' jS j  exp ~-~ , 

using a well-known integral identity. We, however, chose another way, 
which is (in our opinion) a more efficient one. Note that the integrand in 
Eq. (5) is an exponential of a symmetric quadratic form, and hence the 
integral can be easily calculated after diagonalization of the quadratic form 
by an orthogonal transformation. The elements of the matrix 3,it associated 
with the quadratic form are given by 

M/. k = (N - 2) ~/. k + a/S/aksk 

Hence the matrix ~t  has two eigenvalues 2, = 2 ( N - 1 )  (nondegenerate) 
and 22 = N - 2  ( N - 1  times degenerate). The corresponding eigenvectors 
are v, =N-V2{ajsj}~=, and all vectors orthogonal to v,. 

Note now that the term in the argument of the exponential in Eq. (5) 
linear in r 's can be written as a linear combination of Vl and a vector v 2 
orthogonal to v,, 

"l:j / l j  - -  a k 

j =  1 k ( # j )  = I 
1~ - U = ~. . ,  ~" �9 V ,  -'{- (Y..2 T �9 V 2  

where 

1 ,v (/~ Jos, 

is the scalar product of u and v,, 

0( 2 
 os, 

tq _ ak - oci 
I =  1 k ( ~ 1 )  = 1 

1 /2  

is the norm of u-0ClVl, and v 2 is the vector obtained by normalization of 
u - c q V l .  Since the vectors v, and v 2 are orthogonal, the vector v2 is an 
eigenvector of the matrix 3~t. Consider now a basis {Vk}ku=,, where 
{ Vk} k=3U is an arbitrary orthonormal set orthogonal to v] and v,._ Introducing 
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the new integration variables Yk=~'Vk, k =  1 ..... N, we diagonalize the 
quadratic form in Eq. (5) and obtain 

f(la) . . . .  
- -oo  - O C k =  I 2n 

, 1 k~ 2 xexp i(~x, yl +ot,_y2)-- 1-- Yi--~ 1 y~ (6) 

Now the integration over y,,..., Yu can be easily carried out, 

f(jt)=X/2(NZ-_2,[21t(l--2)l-N/'- 

x exp 4(1 - 1/N~ 1 - 2/N) 2( 1 - 2/N) 

x /~/ N ~ ak 
/ = 1  k( : ~ 1 ) =  l 

Thus, the joint distribution of the "local energies" sjhj(O) is virtually the 
same as the Gibbs distribution in the Gaussian Curie-Weiss model in the 
high-temperature (paramagnetic) phase. 

Having found the probability density of the "local energies," one can 
calculate by integration the probability to obtain the configuration {Sj}N=, 
at t = 1, which is equal to the probability of all "local energies" being 
positive: 

Pr[sN[ ~N] . . . .  dltk for) 
k = l  

To perform the integrations over/x's we proceed with the standard method 
for solving the Curie-Weiss model, namely, we use the identity 

exp T)= d, exp 

to decouple the integration variables. Introducing the notations 

Ni,2=-Nv,.2- #{k:  Sk = 1; Ok= + 1} (7) 

we obtain 

P r [ s N I ~ N ] = 4 ~ n l  ~_~ d t e x p [ - N ( ~ F - ~ g ( t ; v , ; v 2 ) ) ]  (8) 

822/84/5-6-6 
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where 

1 +D1 N ) 
q~N(t; Vl; V2) = Vl log I l + 2 V 1 log( 1 - I i )  

+v210gI2+( l-raN ) 2 v, log(1 - 12) 

11"-' = (1 - - 2 )  - 1,2 ~ ~-Jo , v / ~  exp [ dlt (llt -JomNT-t+_Jo/N) 2 ] 2 (  1 - 2IN) J 

1 N 
m u = ~  .~ aj (9) 

j = l  

Despite the fact that the function r Vl; V2) depends on N, the 
evaluation of the integral in Eq. (8) requires only minor modifications of 
the Laplace method (see, e.g., ref. 1, where the Laplace method was applied 
in a similar situation), which yields 

:_ --N[~_tN--qbN(tN; Vl; V2)]} [1 + 0 ( N - l ) ]  (10) Pr[SNI~N] exp{ t _, 
JI--O~tCI)N(IN" , Vl, V2) 

as N ~  or, where tN~IN(Vl; V2) is the solution of 

1 9 O,[~_t---~u(t; Vl; 1/.29)] = 0  (11) 

3. D I S T R I B U T I O N  O F  T H E  F L U C T U A T I O N S  O F  v 1 A N D  v a 

As we have seen in the previous section, the probability to obtain the 
o" N configuration {sj}7= , at t = l  given the configuration { j}j=l at t = 0  

depends only on two macroscopic functions v I = N , / N  and v2=N2/N of 
these configurations [see (7) and (8)]. Therefore the notation p(vl; V2)-- 
Pr[SNI~N] makes sence. The distribution of the random variables Nl and 
N2 (for a fixed initial configuration ~N) is then given by 

Pr[Nl  = NVl; N2 = Nv2] = # {SN: NI = Nvl; N2 = Nv2} p ( v l ;  1'2) 

For a fixed configuration {0)-}N=l the number of configurations {sj}N=, 
with given N l and N 2 is given by the product of binomial coefficients 
cNll +.,N~/Zt--U~l -- mul/2 Therefore 

N I  ~ N 2  " 

Pr[Nl  = NVl ; N2 = Nv2] 

1 (1 -- m~v)1/_, exp[ -- N~U(vl ; 1'2)] 
9 2zrN [vl v~(1 +mu--2Vl)(1  --mU--2V,_)(1 --O;,Cbg(tu; Vl; V_,))] '/-' 

(12) 
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where 

~(vt;  1'2)=-~t-U--~N(tN; I'1; Vz)+r(vl ;  1'2) 

1 log 1 - - m  u m N 1 + n l  N log (13) 

and 

r(v'; v2) = vl l~ vl + v2 l~ v2 + 2 vl log 2 v, 

+ 2 v 2 log 2 v2 

As N--* oo the probability distributions of N ~ / N  and N,_/N concentrate at 
the unique minimum point (in fact, zero) of the function ~(v~; v_,)--the 
solution of 

O,, ,~(vl;v2)=O, O,,2~(vl;v,_)=O 

One has 

1 t2 ~ N ( I ;  V " V2) 1 ,=,,v{ Ov' tN(Vl  vz) O,., ~U(Vl; V,.)=O, -~ -- l, 
Vl ; v2) 

- - O v ~ N ( I ' v I ' v 2 ) I  ..... '{"~ v-'} -- log ( l + m N :  ~v~ 1 ) 

The first term in the rhs of the last expression equals zero since t N is an 
extremum of 3_t--qSN(t; I ' l ;  1'2). Therefore the equation 0v, ~U(vl, 1,2)= 0 is 
equivalent to 

1 dl-lJlN t=tN(vl, vl = 2 Ii (14) 
v2 } 

Analogously, the equation 0,,_, T(v~; v_,) = 0 yields 

l--raN12 ,= (15) 
]/2 - -  T /N(vl, v2 ) 

Denoting by 1,1. N and V2. N the solutions of the system (14), (15) and 
substituting Eqs. (14) and (15) in Eq. (11), we obtain tN(V1.N; V, N)=0.  
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Using this fact and passing to the limit N--* oo in Eqs. (14) and (15), we 
arrive at 

[l ,] v* ,  1 +_m, dlt _ . ~ ( l t _ J o m , )  - l ._-  ~ - - -  ~ e x p  (16) 

where m,  = l i m N ~  mN and ~5" =limN~ ~. VZU, J =  I, 2. Since, as N--, oo, 

the probabilities of N, = v N ,  where v ~ v * ,  are exponentially small, the 
limiting value of N ~ / N  is "nonrandom" and is equal to v*. Analogously, 
limu_ ~ N 2 / N  = v* (in probability). 

Note that assum#1g the validity of the law of large numbers for the 
sequence of arithmetic means 

N l 1 N 
= ~ (sj(1) + 1)(sj(O) + 1) 

we could have obtained the typical value v* of N I / N  (and similarly v*) 
at once. Indeed if one can apply the law of large numbers, then 
v * = P r [ s k ( 1 ) = l ] ( l + m , ) / 2 .  On the other hand, as N---,ov, sk(1)= 
sgn[oJff(0, 1 ) + J0m,]  and therefore 

P r [ s k ( 1 ) = l ] = f  ~ d~l 1 t2) So,,,. x / ~  exp ( - -~  

which implies Eq. (16). 
Equation (12) is the local limit theorem for the random vector 

(N,; N_,). The corresponding integral limit theorem is stated as follows. 
Consider two sequences of rectangles 

d t  ~ ' = [ x / ~  a , , x / ~  b , ] x [ x /@ a 2 , v /  N b z ] c R "- 

and 

d u  = ~'~) + (Nv*; Nv*)  c R z 

Then 

p r [ ( N , ; N z ) ~ d u ] . _ , l  ~]'~]'- { Q(xl ,x ,_)~  nc --Z' , _, d x l d x z e x p  - I ( 1 - I )  ) (17) 
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as N---, oo, where 

x~ x~_ (x, -x2)'- Q(x,, X2) ~_ - . [ - - -  
l + m ,  l - - m ,  2 [ l + 2 ~ I ( 1 - I )  exp(Jom,)  ] 

F +exp( 
C 2 =(l  -m%)1(1 - I )  [I(1 --I) 

L 

and 

I =  lim I i [ ,=o= lim I21,=o 
N ~  ~ N ~  ~ 

The validity of the law of large numbers for the sequence qu [ see (3)] 
follows from the above results for NI and N2. Indeed 

N 

UqN= Z 
k = l  

sk( 1 ) sk(0) = 2(Nl -- N2) -- Nm, 

Therefore Eq. (16) yields 

'im q.--m.r"" " 
N ~ oo ~ -- Jo m . N / / / - ~  

(18) 

where m ( l ) =  erf[Jom,/x/~ ]. The limiting distribution density c~(it) of the 
random variables 

N -  i/2 U [N,--Nv* N,--Nv*] k~=, [s~(1)-m(1)]s~(O):2[ ~ - ~  -3 
--fluctuations of q~--can be easily found from Eq. (17): 

~(~)- 
2[ 2rcI( 1 - I) + exp( -JomZ,)] ,/2 

[ .: ] 
X - -  .~ . j  exp 4(21( I - / )  + exp(-J~m-,) /~)  (19) 

Note that assuming that the limiting distribution of the normalized sums 

N 

S I , o = N  - 1 / 2  ~ [ s / (1 ) -m(1) ]  s l ( 0 )  
/ = !  
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is Gaussian, one can obtain Eq. (19) easily, since the variance of these 
sums can be calculated as follows. One has 

I 
Es~,0= l - m 2 ( 1 ) +  N ~" sA0)sj(O) E[sA1)sj(1)-m2(1)] 

t # j  

Keeping only the relevant corrections to the limiting distributions, one can 
represent sj(1 ) and st(1 ) [see Eq. (2)] as follows: 

sj(1 ) = sgn[ Jl~(0, 1) + Jom. + N-t/'-Jjlst(O)] 

st( 1 ) = sgn[ ~4/;(0, 1 ) + Jom. + N-'/2Josj(O) ] 

where 

N 

~,gj(O, 1) a lim 1 ~, jj, ksk(O ) 
N ~  ct5 N//N k( ~j,l)= l 

and 

N 

~45(0, 1) ,=/ lim 1 ~, Jr kSk(0) 
N ~ cr~ V / ~  k( # j ,  t) = 1 N 

are independent random variables with the standard normal distribution 
independent of Jj, l. Next, 

E[sj(1) st(1) ] =E[E[sj(1) st(1)lJj.t]] = E[E[sfll  )lJj.t] E[st(1)lJj, t]] 

and 

F Jom. Jj Is/(0)] 
E[ sj(1) l Jj, t] = e r f / - - - ~  

- -  J ~ * ) + O ( N  -l) 

where E[ .  I Jj./] is the conditional expectation given Jj,/, yield 

m2(1)+2sj(O)st(O)exp( , , -3/~ E[sj(1)st(1)] = - J 3 m , ) +  O(N -) 
Nn 

Hence, 

Es~, 0 = 1 - m2(1) + 2 exp( --Jom,)/n 

which coincides with the variance of the distribution with the density (19). 
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Although the "short" derivation of the distribution (19) is somewhat 
casual, it is a good supplement to the accurate derivation since it indicates 
clearly the reason why the variance of the distribution (19) is different from 
what one would obtain in the case of sums of independent random variables. 

4. THE AVERAGE N U M B E R  OF FIXED POINTS 

In the particular case ~jv= s~ Eq. (10) simplifies to 

-- --N[~-t-~--dPN(tu;mN)]} [1 + O(N- ' ) ]  p(~N)=pr[~vl~N ] exp{ ' ~  
x/1 - O~t~N( tN; raN) 

as N ~  oo, where 

fbN(tN; mN)-- 1 +raN, 1--m N log 11 + ~ log( 1 -- Iz) 

and t N =-- tN(m N) minimizes �89 t z - ~ N( t; m N). Therefore the main asymptotics 
of the average number of the fixed points with magnetization mN is given by 

} FN(mN)=# ~ : ~ j =  ~j=mN P(~N) 

~2N exp {--~ N[ t~--2(gN(tN; mN) 

+ mNl~ \1 - rn~/+ log(1 

x rcN(1-m. ) ( l -0~ ,~u( t~ ;m~) )  (20) 

The typical shapes of the rate function 

1 
L( m ) -= N~lim ~. log FN(m ) 

are plotted on Figs. 1-3. Qualitatively the evolution of L(m) with Jo is the 
same as the evolution of the corresponding rate functions with 0c (the ratio 
of the number of stored patterns to the total number of spins) in the 
Hopfield I'~1 and diluted Hopfield models) 81 It is believed that the SK model 
is equivalent to the symmetric extremely diluted Hopfield model. Therefore, 
apparently, the rate function L(m) coincides with the corresponding rate 
function in the extremely diluted Hopfield model. 
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Fig. 1. The rate function L(m) for the average number  o f the  fixed points with magnetization 
m for Jo=0.1  (left) and Jo = 1.5 (right). 
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Fig, 2. Tile rate function L(m) for the average number  o f the  fixed points with magnetization 
m for Jo=2.15  (left) and Jo=2 .3  (right). The inset gives the magnification of the function 
L(m) for Jo=2 .3  on the interval [0.9; 1.0]. 
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Fig. 3. The rate function L(m) for the average number  of the fixed points with magnetization 
m for J0=2 .5  (left) and Jo = 3.0 (right). The insets give the magnification of the bands near 
177 = 1 where the rate functions are positive. 
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Consider the indicator functions X(aN) given by 

10 if aN is a fixed point 
X(aN) = otherwise 

Then the number of the fixed points of the dynamics (1) with the 
magnetization mN is given by 

oA/'(mN) = ~ Z(aN) 
O" N : ~f N 

where the summation runs over all configurations a N such that 
zN= ~ aN = NmN. The standard application of the Chebyshev inequality 

Pr[~Ar(mN) > 1/2] ~< 2E,4/'(mN) = 2FN(mN) 

and the Borel-Cantelli lemma allows one to conclude that with probability 
o n e  J f ' ( m N )  = O, for N large enough, whenever m N ~ m and L(m) < O. 

Note that the last result is supplementary to (an analog of) Newman's 
theorem, 161 which certainly can be proven for the SK model with the 
ferromagnetic component and sequential version of dynamics (1). The fixed 
points of the sequential and the parallel dynamics coincide, so all the above 
results concerning the fixed points apply for the sequential dynamics as 
well. Loosely, (the analog of) Newman's theorem says that if J0 is large 
enough, then the configuration uN = { sj = 1 } u=~ is in the basin of attraction 

, 1 N * to of a fixed point SN such that N -  3~. , s, is close 1, or, in other words, 
�9 . J =  J 

the Hamming &stance d/~(uN, s*) = N - '  )--.U=, IS* -- I I is close to zero. The 
rate function L(m) is always (that is, for any J0>~0) negative in a suf- 
ficiently small vicinity of m = 1; therefore the maximal solution of L(m) = 0 
on the interval (0, 1) (see Fig. 3) provides an upper bound for d~(uN, s*). 
When J0 is small the rate function L(m) is negative in a rather large 
interval containing m = 1 (see Fig�9 1 ). Therefore, one can conclude that all 
fixed points of the dynamics (1) are sufficiently far from the configuration 
[l N if Jo is small. 

Note that various arguments (the most reliable of which are those 
based on computer simulations; see, e.g., ref. 4 and references therein) 
predict the existence of a fixed point s* with a basin of attraction contain- 
ing UN such that m* --lim N_ ~ N -I ZJv=l s* > 0  (m* is usually called the 
remnant magnetization)�9 Therefore the lower bound for the Hamming dis- 
tance dH(uu, s*) (always less than 1/2) provided by solution of L ( m ) = 0  
for small Jo is qualitatively correct. That is, the qualitatively stronger state- 
ment dF/(UN, S*) ~ 1/2 as N---> ~ is apparently incorrect for any Jo/> 0. 



986 Patrick 

The average number of all fixed points is, of course, Z,,~ F(m~v), which 
lbr large N is well approximated by max,,~ FN(mN)=FN(0). Therefore the 
asymptotics of the average number of all fixed points is the same as 
that in the SK model without the ferromagnetic component ( Jo=0)  
limN~ ~ log FN/N= 1.992/7J Note that contrary to the (incorrect) conclu- 
sion of ref. 2, the L(0) does not depend on J0- That is, the average number 
of (all) the fixed points is virtually independent of the magnitude of the 
ferromagnetic interaction Jo. 
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